

THE UNITED SHATES OF AMERICA

<u> TO ALL TO WHOM THESE PRESENTS SHALL COME:</u>

Kuzu Zuden Beheer B. A.

MICCUS, THERE HAS BEEN PRESENTED TO THE

Secretary of Agriculture

AN APPLICATION REQUESTING A CERTIFICATE OF PROTECTION FOR AN ALLEGED DISTINCT VARIETY OF SEXUALLY REPRODUCED, OR TUBER PROPAGATED PLANT. THE NAME AND DESCRIPTION OF WHICH ARE CONTAINED IN THE APPLICATION AND EXHIBITS, A COPY OF WHICH IS HEREUNTO ANNEXED AND MADE A PART HEREOF, AND THE VARIOUS REQUIREMENTS OF LAW IN SUCH CASES MADE AND PROVIDED HAVE BEEN COMPLIED WITH, AND THE TITLE THERETO IS, FROM THE RECORDS OF THE PLANT VARIETY PROTECTION OFFICE, IN THE APPLICANT(S) INDICATED IN THE SAID COPY, AND WHEREAS, UPON DUE EXAMINATION MADE, THE SAID APPLICANT(S) IS (ARE) ADJUDGED TO BE ENTITLED TO A CERTIFICATE OF PLANT VARIETY PROTECTION UNDER THE LAW.

NOW, THEREFORE, THIS CERTIFICATE OF PLANT VARIETY PROTECTION IS TO GRANT UNTO THE SAID APPLICANT(S) AND THE SUCCESSORS, HEIRS OR ASSIGNS OF THE SAID APPLICANT(S) FOR THE TERM OF TWENTY YEARS FROM THE DATE OF THIS GRANT, SUBJECT TO THE PAYMENT OF THE REQUIRED FEES AND PERIODIC REPLENISHMENT OF VIABLE BASIC SEED OF THE VARIETY IN A PUBLIC REPOSITORY AS PROVIDED BY LAW, THE CHT TO EXCLUDE OTHERS FROM SELLING THE VARIETY, OR OFFERING IT FOR SALE, OR REPRODUCING IT, OR RETING IT, OR EXPORTING IT, OR CONDITIONING IT FOR PROPAGATION, OR STOCKING IT FOR ANY OF THE URPOSES, OR USING IT IN PRODUCING A HYBRID OR DIFFERENT VARIETY THEREFROM, TO THE EXTENT BY THE PLANT VARIETY PROTECTION ACT. (84 STAT. 1542, AS AMENDED, 7 U.S.C. 2321 ET SEQ.)

LETTUCE

'Capsule'

In Testimonn Mercos, I have hereunto set my hand and caused the seal of the Minut Muriety Protection Office to be affixed at the City of Washington, D.C. this sixteenth day of May, in the year two thousand and eight.

Allost:

30-3

Commissioner Plant Variety Protection Office Agricultural Marketing Service

Edward . Lather

NAME (Please print or type)

CAPACITY OR TITLE

02/07/2007

(See reverse for instructions and information collection burden statement)

DATE

SIRFCTOR RALL

NAME (Please print or type)

GENERAL INSTRUCTIONS: To be effectively filed with the Plant Variety Protection Office (PVPO), ALL of the following items must be received in the PVPO: (1) Completed application form signed by the owner; (2) completed exhibits A, B, C, E, F; (3) for a tuber reproduced variety, verification that a viable (in the sense that it will reproduce an entire plant) tissue culture will be deposited and maintained in an approved public repository; and (4) payment by credit card or check drawn on a U.S. bank for \$4,382 (\$518 filling fee and \$3,864 examination fee), payable to "Treasurer of the United States" (See Section 97.6 of the Regulations and Rules of Practice). NEW: With the application for a seed reproduced variety or by direct deposit soon after filling, the applicant must provide at least 3,000 viable untreated seeds of the variety per se, and for a hybrid variety at least 3,000 untreated seeds of each line necessary to reproduce the variety. Partial applications will be held in the PVPO for not more than 90 days; then returned to the applicant as un-filed. Mail application and other requirements to Plant Variety Protection Office, AMS, USDA, Room 401, NAL Building, 10301 Baltimore Avenue, Beltsville, MD 20705-2351. Retain one copy for your files. All items on the face of the application are self explanatory unless noted below. Corrections on the application form and exhibits must be initialed and dated. DO NOT use masking materials to make corrections. If a certificate is allowed, you will be requested to send a payment by credit card or check payable to "Treasurer of the United States" in the amount of \$768 for issuance of the certificate. Certificates will be issued to owner, not licensee or agent.

NOTES: It is the responsibility of the applicant/owner to keep the PVPO informed of any changes of address or change of ownership or assignment or owner's representative during the life of the application/certificate. The fees for filing a change of address; owner's representative; ownership or assignment; or any modification of owner's name is specified in Section 97.175 of the regulations. (See Section 101 of the Act, and Sections 97.130, 97.131, 97.175(h) of the Regulations and Rules of Practice.)

Plant Variety Protection Office

Telephone: (301) 504-5518

FAX: (301) 504-5291

General E-mail: PVPOmail@usda.gov

Homepage: http://www.ams.usda.gov/science/pvpo/PVPindex.htm

#200700120

SPECIFIC INSTRUCTIONS:

To avoid conflict with other variety names in use, the applicant must check the appropriate recognized authority and **provide evidence** that the permanent name of the application variety (even if it is a parental, inbred line) has been cleared by the appropriate recognized authority before the Certificate of Protection is issued. For example, for agricultural and vegetable crops, contact: U.S. Department of Agriculture, Agricultural Marketing Service, Livestock and Seed Programs, **Seed Regulatory and Testing Branch**, 801 Summit Crossing Place, Suite C, Gastonia, North Carolina 28054-2193 Telephone: (704) 810-8870. http://www.arns.usda.gov/lsg/seed.htm.

JTEM

19a. Give.

- (1) the genealogy, including public and commercial varieties, lines, or clones used, and the breeding method;
- (2) the details of subsequent stages of selection and multiplication;
- (3) evidence of uniformity and stability; and
- (4) the type and frequency of variants during reproduction and multiplication and state how these variants may be identified
- 19b. Give a summary of the variety's distinctness. Clearly state how this application variety may be distinguished from all other varieties in the same crop. If the new variety is most similar to one variety or a group of related varieties:
 - (1) identify these varieties and state all differences objectively;
 - (2) attach replicated statistical data for characters expressed numerically and demonstrate that these are clear differences; and
 - (3) submit, if helpful, seed and plant specimens or photographs (prints) of seed and plant comparisons which clearly indicate distinctness.
- 19c. Exhibit C forms are available from the PVPO Office for most crops; specify crop kind. Fill in Exhibit C (Objective Description of Variety) form as completely as possible to describe your variety.
- 19d. Optional additional characteristics and/or photographs. Describe any additional characteristics that cannot be accurately conveyed in Exhibit C. Use comparative varieties as is necessary to reveal more accurately the characteristics that are difficult to describe, such as plant habit, plant color, disease resistance, etc.
- 19e. Section 52(5) of the Act requires applicants to furnish a statement of the basis of the applicant's ownership. An Exhibit E form is available from the PVPO.
- 20. If "Yes" is specified (seed of this variety be sold by variety name only, as a class of certified seed), the applicant MAY NOT reverse this affirmative decision after the variety has been sold and so labeled, the decision published, or the certificate issued. However, if "No" has been specified, the applicant may change the choice. (See Regulations and Rules of Practice, Section 97.103).
- 23. See Sections 41, 42, and 43 of the Act and Section 97.5 of the regulations for eligibility requirements.
- 24. See Section 55 of the Act for instructions on claiming the benefit of an earlier filing date.
- 22. CONTINUED FROM FRONT (Please provide a statement as to the limitation and sequence of generations that may be certified.)
- 23. CONTINUED FROM FRONT (Please provide the date of first sale, disposition, transfer, or use for each country and the circumstances, if the variety (including any harvested material) or a hybrid produced from this variety has been sold, disposed of, transferred, or used in the U.S. or other countries.)

SEE ADDENDUM

24. CONTINUED FROM FRONT (Please give the country, date of filing or issuance, and assigned reference number, if the variety or any component of the variety is protected by intellectual property right (Plant Breeder's Right or Patent).)

SEE ADDENDUM

According to the Paperwork Reduction Act of 1995, an agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is 0581-0055. The time required to complete this information collection is estimated to average 1.4 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Addendum Form Application for Plant Variety Protection Certificate

Ad Paragraph 23: Dates of first sale & countries of lettuce variety Capsule

France February, 2005 England March, 2005 Australia May, 2005 Italy January, 2006 Sweden August, 2005 Germany July, 2005 Belgium June, 2005 Iceland June, 2005 USA February 9, 2006

Ad Paragraph 24: Registration & IPR info of lettuce variety Capsule

Registration:

Europe : B list

Instance : NAK, Netherlands

Application date : 03/31/2004

Application nr. : 15285 Registration date : 03/31/2006

Registration nr. : 22395

IPR:

US Patent : 6,903,249
Date : June 7, 2005
Inventor : Lambalk, et al.

Assignee : Enza Zaden

Exhibit A - Origin and Breeding History

Lettuce variety: CAPSULE

Origin

CAPSULE is derived from a cross made in august 1999 between the green oakleaf 'E19.6065', later called 'Shiren', and a butterhead line F44815.

The green oakleaf 'Shiren' is resistant to European Bremia lactucae races Bl: 1-16,21,23.

The butterhead line F44815 is originated from successive backcrosses of the accession CGN4683 with the butterhead varieties Thirza, Divina and Nadine. It contains a resistance gene providing the resistance to European *Bremia lactucae* races Bl: 1-25.

The objective of this cross was to develop a green oakleaf line resistant to *Bremia lactucae* races Bl: 1-25. CAPSULE (experimental code E19.5761) is a green oakleaf used for babyleaf production, for year round harvests, resistant to European *Bremia lactucae* races Bl: 1-25. It is black seeded.

The pedigree method of plant breeding using single plant and mass selection was employed to develop this variety

Breeding Stages

- F1: August 1999: the cross was made between 'Shiren' and the butterhead line F44815.

 October 1999: seeds from this cross were sown and 10 plants transplanted for multiplication in a greenhouse at Enza Holland facilities –Enkhuizen. Those plants were harvested in bulk in April 2000 under the F2 line number 29837.
- F2: Seeds of the F2 line 29837 were sown in peat blocks in May 2000 and, after evaluation of the young plants in the trays, transplanted in a selection field in the Enza France facilities in Allonnes (France) in June 2000. A single plant selection of 9 Italian green oakleaf- like plants was made in August 2000. Selected plants were transferred and transplanted in a heated glasshouse in Enza Holland facilities (Enkhuizen) for seed multiplication. Bioassays from leaf discs of those plants were carried out for resistance to *Bremia* races Bl:16 and Bl:18. Three (3) plants were resistant, and seeds of them were harvested individually in November 2000, providing seeds of the F3 generation.
- F3: Seeds of those F3 lines were sown in peat blocks in Februray 2001 and transplanted in March 2001 in a selection field in the Enza France facilities in Allonnes (France). Those lines were evaluated both at young stage (just before transplantation) and at fully mature stage, in May 2001.
 F3 line 0032920 showed the most interesting leaf texture, shape and colour for babyleaf purpose. A single plant selection of 5 plants was made in this F3. Selected plants were transferred in a plastic tunnel greenhouse for seed multiplication. Bioassays from leaf discs of those plants were done for resistance to *Bremia* race B1:18. Three (3) of them were resistant. Seeds of those plants were harvested individually, in September 2001, providing seeds of the F4 generation.
- F4: Seeds of those F4 lines were sown in peat blocks in October 2001 in Australia and transplanted early November 2001, in a breeding nursery in Griffith (New South Wales, Australia). Evaluation has been done at fully mature stage in December 2001.
 F4 line 0135761 showed the most interesting leaf texture, shape and uniformity. This line was coded as the new experimental variety E19.5761. Six (6) plants were selected in this field, defoliated and left in the field for a seed multiplication. Seeds of those plants were harvested in February 2002, providing seeds of the F5 generation. Each lot was tested on seedling for Bremia races Bl:18 and Bl:21, and amongst them, the F5 line 0230717 was uniformly resistant.
- F5: Seeds of this F5 line 0230717 were sown for commercial seed production in Enkhuizen (Holland) in April 2002. This production was harvested in late September 2002

European registration of the variety was started in April 2004 by an application file submitted at the Naktuinbouw in Holland, and granted in March 2006. The name of 'CAPSULE' was proposed for the experimental number E19.5761.

Capsule has been evaluated in extensive trials in lettuce babyleaf growing areas in Europe, California and Arizona.

revised

The variety Capsule has been observed for 9 generations of reproduction and during the seed increase period since 2002, and was stable and uniform. 0% of variants have been observed in our selection and seed production fields.

revised

Exhibit B - Statement of Distinctiveness

Lettuce variety: CAPSULE

Capsule is a black seeded, non-heading, green oak leaf lettuce specially developed for year-round baby leaf production.

Capsule is similar to the commercial baby leaf lettuce varieties Bambino and Seacrest, however, there are a number of differences:

- Capsule is resistant to California *Bremia lactucae* races CAVII and CAVIII while Bambino is susceptible to races CAVII and CAVIII. (exhibit D).
- Capsule is resistant to LMV (lettuce mosaic virus) while Seacrest and Bambino are susceptible to LMV (exhibit D & ref. pvp no. 200000021). The LMV resistance of Capsule is originated from the LMV-ga gene of the parent Nadine.
- Capsule is significant smaller in size and weight compared to Seacrest and Bambino (exhibit C).
- Capsule has a different leaf shape compared to Bambino and Seacrest. Capsule shows a broader leaf center and the leaf margin is less incised (moderate vs deep) compared to Bambino and Seacrest. (see pictures exhibit C).

Capsule has a light green color resembling 144A of the RHS color chart.

most

Capsule

Bio-Assays

Leaf disc test Bremia Lactucae, CA VII isolate; Enza Zaden, San Juan Bautista, CA

3 leaf samples per plant, inoculation: 11/10/2006, final reading: 11/21/2006

Culitvar	total # plants	+	-	Result
Capsule (rep 1)	12	0	12	resistant
Capsule (rep 2)	12	0	12	resistant
Seacrest (rep 1)	12	2*	10	resisant
Seacrest (rep 2)	12	0	12	resistant

⁻ no sporulation, + sporulation, * slight sporulation

Seedling test Bremia Lactucae, CA VII isolate; Enza Zaden, San Juan Bautista, CA

inoculation: 12/5/06, final reading: 12/20/06

	Cultivar	tot # plants	+	-	Result
	Capsule	15	0	15	resistant
١	Seacrest	17	0	17	resistant
1	Bambino	16	16	0	susceptible
١	Shiren	13	13	0	susceptible
1	FF44815	15	0	15	resistant

⁻ no sporulation, + sporulation

Seedling test Bremia Lactucae, CA VIII isolate; Enza Zaden, San Juan Bautista, CA

inoculation: 1/30/07, final reading: 2/7/06

Culitvar	total # plants	+	-	Result
Capsule (rep 1)	16	2*	14**	resistant
Capsule (rep 2)	15	0	15	resistant
Capsule (rep 3)	15	0	15	resistant
Seacrest (rep 1)	16	4*	12**	resistant
Seacrest (rep 2)	16	0	16	resistant
Bambino (rep 1)	16	- 16	0	susceptible
Bambino (rep 2)	16	16	0	susceptible
Shiren (rep 1)	14	14	0	susceptible
Shiren (rep 2)	15	15	0	susceptible
F44815 (rep 1)	16	0	16	resistant
F44815 (rep 2)	16	0	16	resistant

⁻ no sporulation, + sporulation, * slight sporulation on cotyledon, ** some necrosis on leaf

Seedling test LMV, Is1 (common strain)

Results from Enza Zaden, Enkhuizen, NL

ROOGICO HOM EMEG EG	deli, Elikildizeli, NE			
Culitvar	total # plants	+	-	Result
Capsule	15	0	15	resistant

Seedling test Bremia Lactucae, CA VIII isolate; Enza Zaden, San Juan Bautista, CA

inoculation: 9/4/07, final reading: 9/12/07

Culitvar	total # plants	+	_	Result
Capsule	14	1*	13	resistant
Seacrest	16	0	16	resistant
Bambino	14	14	0	susceptible

⁻ no sporulation, + sporulation, * slight sporulation on cotyledon

Seedling test Bremia Lactucae, CA VII isolate; Enza Zaden, San Juan Bautista, CA

inoculation: 9/4/07, final reading: 9/12/07

Culitvar	total # plants	+	_	Result
Capsule	14	1*	13	resistant
Seacrest	15	0	15	resistant
Bambino	15	15	0	susceptible

⁻ no sporulation, + sporulation, * slight sporulation on cotyledon

According to the Paperwork Reduction Act of 1995, an agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is 0581-0055. The time required to complete this information collection is estimated to average 1.4 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, sexual orientation, marital or family status, political beliefs, parentel status, or protected genetic information. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL MARKETING SERVICE SCIENCE AND TECHNOLOGY PLANT VARIETY PROTECTION OFFICE BELTSVILLE, MD 20705

Exhibit C

OBJECTIVE DESCRIPTION OF VARIETY Lettuce (Lactuca sativa L.)

ENZA ZADEN BEHEEK B.V. E19. 5761 CAPSULE ADDRESS Sever with No. 178 (No. City, State, 24) (Aud. and Consulty) PORCH 7, 1 (bot 2 A) EMMINISTER HALING-15, (bot 3 A) EMMINISTER HALING-15, (bot 4	NAME OF APPLICANT (S)	TEMPORARY OR EXPERIMENTAL DESIGNATION	VARIETY NAME				
PYD NUMBER **HALING** IF, 1602 DB EVRHUIZEN** **METHERLANDS** **PREALANDS** **PREALANDS** **PREALANDS** **PREALANDS** **Place the appropriate number that describes the varietal character in the boxes below. Place a zero in the first box (e.g. 0 9 9 or 0 9) when number is either 99 or less or 9 or less. Measured data should be the mean of an appropriate number (at least 20) of well space plants. Royal Horticultural Society or any recognized color standard may be used to determine plant colors. The Location of the Test Area is: **SAN JUAN BRUTISTA**, CA** Color System Used: **RHS** 144A* **SPECIFIC VARIETIES USED FOR COMPARISON AS CHECK VARIETIES IN THIS APPLICATION: Use standard regional check varieties, which are adapted to your area. One of the comparison varieties must be the most similar variety (c1) *** **BATIBINO** Standard Regional Check Variety (c2) *** 1. PLANT TYPE: (See List of Suggested Check Varieties on Page 8) 01 = Cutting/Leaf 05 = Great Lakes Group 05 = Stantare (thaca) Group 10 = Latin 05 = Stantare (thaca) Group 11 = Other (Specify) 09 = Stem (thaca) Group 12 = Blatch (Grey Brown) (c1) 09 = Stem (c1) 01 (c2) 01 2. SEED: (a1) 2 COLOR 1 = White (Silver Gray) 2 = Black (Grey Brown) (c1) 3 = Brown (Amber) (c2) 2 = Light Not Required 2 = Not Susceptible 2 = Not Susceptible	ENZA ZADEN BEHEER A.V.	E19.5761	CAPSULE				
is either 99 or less or 9 or less. Measured data should be the mean of an appropriate number (at least 20) of well space plants. Royal Horticultural Society or any recognized color standard may be used to determine plant colors. The Location of the Test Area is: SANJUAN BRUTISTA, CA Color System Used: RHS 144-A SPECIFIC VARIETIES USED FOR COMPARISON AS CHECK VARIETIES IN THIS APPLICATION: Use standard regional check varieties, which are adapted to your area. One of the comparison varieties must be the most similar variety used in Exhibit B. Application Variety (a1)	POBOX 7, 1600 AA ENKHUIZEN HALING 1E, 1602 DB ENKHUIZEN		PVPO NUMBER				
SPECIFIC VARIETIES USED FOR COMPARISON AS CHECK VARIETIES IN THIS APPLICATION: Use standard regional check varieties, which are adapted to your area. One of the comparison varieties must be the most similar variety used in Exhibit B. Application Variety (a1)	is either 99 or less or 9 or less. Measured data should be the mean of an appropriate number (at least 20) of well space plants. Royal Horticultural Society or any						
your area. One of the comparison varieties must be the most similar variety used in Exhibit B. Application Variety (a1)	The Location of the Test Area is: SAN JUAN BRU	Color System Used:	RHS 144A				
2. SEED: (a1) 2 COLOR (a1) LIGHT DORMANCY (a1) HEAT DORMANCY 1 = Susceptible 2 = Not Susceptible 2 = Not Susceptible (c2) SHAPE OF COTYLEDONS: 1 = Broad (a1) 2 = Intermediate (a2) 3 = Spatulate (a2) 3 Spatulate (a3) 3 = Spatulate (a2) 3 Spatulate (a3) 3 = Spatulate (a3) 3 = Spatulate (a3) 3 = Spatulate (a3) 3 = Spatulate (a4) 3 = Spatulate	Application Variety (a1)	ost similar variety used in Exhibit B. Most Similar Variety (c1) BA CS T on Page 8) sine 07 = Salinas Group 10 = L Group 08 = Eastern (Ithaca) Group 11 = C oup 09 = Stem	#7 <i>81~0</i>				
(a1) 2 COLOR (a1) 1 = White (Silver Gray) (c1) 2 = Black (Grey Brown) (c1) 2 = Brown (Amber) (c2) 1 = Light Required (c2) 1 = Light Not Required (c2) 1 = Susceptible (c2) 1 = Su	(a1) [0]	(c1) [O] 1 (c2)	01				
conditions. SHAPE OF COTYLEDONS: 1 = Broad	(c1) 2 1 = White (Silver Gray) 2 = Black (Grey Brown) (c1) 3 = Brown (Amber)	1 = Light Required 2 = Light Not Required (c1)	1 = Susceptible				
(a1) 2 (c1) 2 (c2) 3		vide a color photograph or photocopy of the fourt	n leaf from 20 day-old seedling grown under optimal				
		¬ ——— '	(c2) 3				
\cdot	SHAPE OF FOURTH LEAF: (a1)	·					

3. COTYLEDON TO FOURTH LEAF STAGE: (continued)

- 1. Transverse oval
- 2. Round
- 3. Oval
- 4. Elongated
- 5. Lanceolate
- 6. Pinnately lobed

LENGTH/WIDTH INDEX OF FOURTH LEAF: L/W x 10

- 3 5

APICAL MARGIN:

1 = Entire

2 = Crenate/Gnawed

4 = Moderately Dentate 5 = Coarsely Dentate

7 = Lobed

8 = Other (Specify)

3 = Finely Dentate

6 = Incised

(a1)

7

(c1)

7

BASAL MARGIN: (Use the options for Apical Margin above)

(a1)

(c1)

UNDULATION:

1 = Flat

2 = Slight

3 = Medium

4 = Marked

GREEN COLOR:

1 = Yellow Green

2 = Light Green

3 = Medium Green 4 = Dark Green

5 = Blue Green

(c1)

6 = Silver Green

7 = Grey Green

(a1)

(a1)

3 (c1)

ANTHOCYANIN:

DISTRIBUTION:

1 = Absent 2 = Margin Only

3 = Spotted 4 = Throughout 5 = Other (Specify)

(c1)

| |

CONCENTRATION:

1 = Light

2 = Moderate

3 = Intense

(a1)

(a1)

(a1)

(a1)

(a1)

(c1)

(c2)

ROLLING:

1 = Absent

2 = Present

1

CUPPING:

2 = Slight

(c1)

(c2)

3 = Markedly

1 = Uncupped

(c1)

REFLEXING:

1 = None

2 = Apical Margin

3 = Lateral Margins

(c1)

. MATURE LEAVES (O								#	#200	700	12
NOTE: Provide color pho	oto of a harve	st-mature leaf wh	ich accurat	ely shows col	or and marg	in characteris	stics.				
MARGIN:											
incision dept (deepest penetra		Absent/Shallow (i	Dark Green	Boston)	2 = Mod	erate (Vangu	ard)	3 = D	eep (Great La	kes 659)	
of the margin)		(a1)	2		(c1)	3		(c2)	3		
INDENTATION:	(Finest division	ons of the margin)								
		1 = Entire (Dark 2 = Shallowly De 3 = Deeply Dent	ntate (Grea	at Lakes 65)	4 = Cre 5 = Oth	enate (Vangua ner (Specify)	ard)				,
		(a1)		,	(c1)	1	٠.	(c2)	1		
UNDULATIONS APICAL MARGI		1 = Absent/Sligh 3 = Strong (Grea	t (Dark Gre t Lakes 659	en Boston) 2 9)	2 = Moderat	e (Vanguard)					
		(a1)	1	,	(c1)	1		(c2)	1		
GREEN COLOR		1 = Very Light Gr 2 = Light Green (3 = Mediu 4 = Dark 0	m Green (G Green (Vang	reat Lakes)	5 = Ve 6 = Oth	ry Dark ner (Sn	(Green		
		(a1)	2	· Dam	(c1)	3		(c2)	3-4		
ANTHOCYANIN:					a.						
DISTRIBUTION:		1 = Absent 2 = Margin Only (Big Boston	3 = Spot) 4 = Thro	ted (Califorr ughout (Priz	nia Cream Bu e Head)	tter) 5 =	Other	(Specify)		
		(a1)	1		(c1)	1	((c2)	1		
CONCENTRATIO	N:	1 = Light (iceberg)	2 = Modera	te (Prize He	ad) 3 = In	tense (Rul	oy)		-	
		(a1)			(c1)		(c2)			
SIZE:	•	1 = Small		2= Medium		3 = La	ırge				
		(a1)	1		(c1)	2	(c2)	3		
GLOSSINESS:	1	l = Dull (Vanguar	d)	2 = Modera	ate (Salinas) • 3	= Glossy	(Great	Lakes)		٠
		(a1)	2		(c1)	2	(c2)	2		
BLISTERING:	1 = Absent (Salin		2 = Mode (Va	erate nguard)	3 =	Strong (Prize Head	D	ė.			
		(a1)	1	-	(c1)	1		c2)	1		
LEAF THICKNESS	S: 1 = Th	in (a1)	2 = Inter	mediate	3 = (c1)	Thick	(0	:2)	[3]		
TRICHOMES:	1 = Absent	(Smooth)	2 = Prese	ent (Spiny)			,	- •			
		(a1)	17	- * -	(c1)	1	(0	:2)		An a	

5. PLANT:

SPREAD OF FRAME LEAVES:

cm

5. PLANT: (continued)						
HEAD DIAMETER: (Market Trimmed	with Single Cap Le	ean 37			57	
Total Hot	(a1)	319 cm	(c1) 45 c	m (c2)	4 4 cm	
HEAD SHAPE:	1 = Flattened	3 = Spherical	5 = Non-Hea	ading		
6 = Other (Specify)	2 = Slightly Flatt				r———	
	(a1)	5	(c1) <u>5</u>	(c2)	5	
HEAD SIZE CLASS:	1 = Small	2 = Medium	3= Large		F-1-3	
	(a1)	1	(c1) 2	(c2)	3	
HEAD PER CARTON:					_	
	(a1)		(c1)	(c2)		
HEAD WEIGHT:		_879			L036	
Aghlei 1	(a1)	401 g.	(c1) <i>i Q G</i>	7 g. (c2)	606	g.
HEAD FIRMNESS:	1 = Loose	2 = Moderate	3= Firm	4	4 = Very Firm	
	(a1)		(c1) [(C2)		
6. BUTT:		<u> </u>				
SHAPE:	1 = Slightly Cond	ave 2 ≃ Flat	3 = Rounded	I		
	(a1)	3	(c1) 3	(c2)	3	
	(4.7)	<u></u>	(01)	(02)	المجيدا	
MIDRIB:	1 = Flattened (Sa		` '		ed (Great Lakes 659))
MIDRIB:			` '))
MIDRIB:	1 = Flattened (Sa	alinas) 2 = Model	rately Raised 3 =	Prominently Rais	ed (Great Lakes 659))
	1 = Flattened (Sa (a1)	alinas) 2 = Model	rately Raised 3 = (c1)	Prominently Rais	ed (Great Lakes 659))
7. CORE:	1 = Flattened (Sa (a1)	alinas) 2 = Model	rately Raised 3 = (c1)	Prominently Rais	ed (Great Lakes 659))
7. CORE:	1 = Flattened (Sa (a1)	alinas) 2 = Model	rately Raised 3 = (c1)	Prominently Rais	ed (Great Lakes 659))
7. CORE: DIAMETER AT BASE OF HEAD:	1 = Flattened (Sa (a1)	alinas) 2 = Model	rately Raised 3 = (c1)	Prominently Rais	ed (Great Lakes 659))
7. CORE: DIAMETER AT BASE OF HEAD:	1 = Flattened (Sa (a1) (a1) (a1) ORE DIAMETER: (a1)	3 3 3 mm 3 5 4	(c1) 3 m	Forminently Rais (c2) mm (c2)	ed (Great Lakes 659))
7. CORE: DIAMETER AT BASE OF HEAD: OPTIMIZE RATIO OF HEAD PLANETER/CO	1 = Flattened (Sa (a1) (a1) (a1) ORE DIAMETER: (a1)	3 3 3 mm 3 5 4	(c1) 3 m	Forminently Rais (c2) mm (c2)	ed (Great Lakes 659))
7. CORE: DIAMETER AT BASE OF HEAD: O'JIT 1-7 RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date:	1 = Flattened (Sa (a1) (a1) (a1) PRE DIAMETER: (a1) HEAD TO APEX:	3 9 mm 3 5 4 115 mm NOTE: First W	(c1) 3 m (c1) / / 3 m (c1) / / 3 m	re Prominently Rais (c2) (c2) (c2) (c2) (c2) (c2)	3 9 mm 15 0 1 8 7 9 3	
7. CORE: DIAMETER AT BASE OF HEAD: O'3/17/17 RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date:	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1)	3 3 3 mm 3 5 7 mm 3 5 7 mm 1 5 3 mm NOTE: First W can a	(c1) 3 m (c1) / / / 4 (c1) / / / 4 (c1) / / / 4 (c1) / / / (c1) / / (c1) / / (c1) / / (c1) / (c1	(c2) (c2)	3 9 mm 15 0 1 8 7 9 3	
7. CORE: DIAMETER AT BASE OF HEAD: O'JIT 1-7 RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date:	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1)	3 3 3 mm 3 5 7 mm 3 5 7 mm 1 5 3 mm NOTE: First W can a	(c1) 3 m (c1) / 0 3 m (c1) / 0 3 m (ater Date is the date so	(c2) (c2)	3 9 mm 15 0 1 8 7 9 3	
7. CORE: DIAMETER AT BASE OF HEAD: O'3/17/17 RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date:	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1) VATER DATE TO (a1) 1 = Very Slow	alinas) 2 = Model 3 3 3 3 4 115 53 mm NOTE: First W can a SEED STALK EMERGE 105 3 = Medium	(c1) 3 m (c1) / 0 3 m (c1) / 0 3 m (ater Date is the date so	re Prominently Rais (c2) (c2) (c2) (c2) (c2) (c2) (c2) (c2)	ed (Great Lakes 659)	
7. CORE: DIAMETER AT BASE OF HEAD: RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date: NUMBER OF DAYS FROM FIRST WATER TO THE PROPERTY OF THE PROPERTY	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1) // 5/07 WATER DATE TO (a1)	3 3 mm 3 5 mm 3 7 mm 3 8 mm NOTE: First W can a seed STALK EMERGE	(c1) 3 m (c1) / 0 3 m (c2) / 0 3 m (c3) / 0 3 m (c4) / 0 3 m (c5) / 0 3 m (c6) / 0 3 m (c7) / 0 3 m (c8) / 0 3 m (c9) / 0 3 m (c9) / 0 3 m (c1) / 0 3 m (c1) / 0 3 m (c1) / 0 3 m (c2) / 0 3 m (c3) / 0 3 m (c4) / 0 3 m (c5) / 0 3 m (c6) / 0 3 m (c7) / 0 3 m (c8) / 0 3 m (c9) /	re Prominently Rais (c2) (c2) (c2) (c2) (c2) (c2) (c2) (c2)	ed (Great Lakes 655) 3 3 15 0 18 15 0 18 17 18 17 18 19 18 19 19 19 19 19 19 19	
7. CORE: DIAMETER AT BASE OF HEAD: O'THE POT TO THE P	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1) VATER DATE TO (a1) 1 = Very Slow 2 = Slow (a1)	3 3 3 mm 3 5 4 115	(c1) 3 m (c1) / 0 3 m	re Prominently Rais (c2) (c2) (c2) (c2) (c2) (c2) (c2) (c2)	ed (Great Lakes 659)	
7. CORE: DIAMETER AT BASE OF HEAD: RATIO OF HEAD DIAMETER/CO CORE HEIGHT FROM BASE OF 8. BOLTING: (Give First Water Date: NUMBER OF DAYS FROM FIRST WATER TO THE PROPERTY OF THE PROPERTY	1 = Flattened (Sa (a1) (a1) ORE DIAMETER: (a1) HEAD TO APEX: (a1) VATER DATE TO (a1) 1 = Very Slow 2 = Slow (a1)	alinas) 2 = Model 3 3 3 4 115 53 mm NOTE: First W can a SEED STALK EMERGE 105 3 = Medium 4 = Rapid	(c1) 3 m (c1) / 0 3 m	re Prominently Rais (c2) (c2) (c2) (c2) (c2) (c2) (c2) (c2)	ed (Great Lakes 655) 3 3 15 0 18 15 0 18 17 18 17 18 19 18 19 19 19 19 19 19 19	

									"		_	
							·				<u> </u>	Exhibit C (Lettuce)
			(a1)		cm	(c1)		cm	(c2)		cm	
8. BOLTING: ((continued) #	N. 722 - 1	1.00									
·	BOLTER PLA	10	ਰੋ/ਮੋ/ਪੋਰ st point)									
		` ,	(a1)	34	cm	(c1)	2 8 cm		(c2)	3 () cm		
BOLTER LEA	AVES:	1 = Straight	2 = ((a1)	Curved 2		(c1)	2		(c2)	2		
MARGIN:	1 = Entire	2 = Dentate	(a1)	2		(c1)	2		(c2)	2		
COLOR:	1 = Light (∂reen 2 =	• Medium Gr (a1)	een 3 = Da	rk Green	(c1)	2		(c2)	2		
BOLTER HAI	DJT.		(4.)			(0.7			(02)			
	LINFLORESCI	ENCE: 1-	: Absent	2 = Pre	annt.							
ICRMINAL	INFLORESC	ENCE. =	(a1)	2=116	:Seta	(c1)	2		(c2)	2		
LATERAL	SHOOTS:		1 = A (a1)	Absent	2 = Present	(c1)	2		(c2)	2		
BASAL SI	DE SHOOTS:		1 = A	bsent	2 = Present							
			(a1)	2		(c1)	2		(c2)	2		
9. MATURITY: NOTE: Comple				ation)								
SEASON	15-7	CATION VA		MO	ST SIMILAR VA	RIETY	STANI	DARD RE	GIONA	L CHECK VA	RIETY	
<u> </u>		lo. of Days		1) , , , ,	No. of Days ¹	1	71.5			No. of Days ¹		
Spring	y 52 y 30			y 26			y 45 y 26		+			
Summer	<u> </u>	J ₄₃		U 38	٤		وع د		2)	38	+-	
Fall Winter	y 65	70		259			1 59				+	
First Water Date					<u>I</u>	l			i			
Give Planting Da												
Spring:	1) 2/18/20	06 GONZ	ALES , C	A (BAB)	(LEAF)							
Summer: ½	1 1/11/200	26 JAN J	TONB LAND	STA , CA	CAABY LEAF)	1 -1 -66			/-		-1
Fall:) 8/31/200) 4/0/2001	6 SANJO	MA BAVI	BINGG	Y LEAF) (BABY LEAF A (FULL MATO F)	JEILY)	,2) 8/28/	2006 (HUL	AK,CA (B.	ABY LE	AF)
Winter:) "/8/2000	, prin	1,12 (,8	SHOY CEM	7						_	
10. ADAPTATIO	ON:											
PRIMARY R	REGIONS OF A	DAPTATIO	N (tested an	d proven ad	apted):							
0 = Not Test	ted 1 ≃ Not	Adapted	2 = Adapted									
2 Southw	est (CA and/or	AZ desert)	[2	West C	past		O North	east				
0 North C	Central		[7	Southea	ast		Other	(Specify)				

#200700120

10. ADAPTATION: (Continued)		•		
SEASON:	_			
2 Spring (Area WEST COAST	SOUTH WEST) 2	Fall (Area <i>WES1</i>	COAST, SOUTH WES	<u>T)</u>
2 Summer (Area WEST COAS	7 2	Winter (Area <u>Sov</u>	TH LEST	
GREENHOUSE: 0 = Not				
SOIL TYPE: 1 = Min	eral 2 = Organic	3 = Bot	th	
11. VIRAL DISEASES:				
1 = Immune 3 = Resistant	5 = Moderately Resistant/M	Moderately Susceptible	7 = Susceptible	9 = Highly Susceptible
Big Vein	(a1) O	(c1) O	(c2) O	0 = not tested
Lettuce Mosaic	(a1) 3	(c1) O	(c2) 7	•
Cucumber Mosaic	(a1) O	(c1) 0	(c2) Ø	
Tomato Bushy Stunt, cause of dieback		(c1) O	(c2) O	
Turnip Mosaic	(a1) 0	(c1) O	(c2) O	
Beet Western Yellows	(a1) 0	(c1) O	(c2) 0	
Lettuce Infectious Yellows	(a1) 0	(c1) 0	(c2)	
Other (Specify)	(a1)	(c1)	(c2)	
12. FUNGAL/BACTERIAL DISEASES:				
1 = Immune 3 = Resistant	5 = Moderately Resistant/M	foderately Susceptible	7 = Susceptible	9 = Highly Susceptible
Corky Root Rot (Races:) ^(a1) 0	(c1) O	(c2) O	0 = not tested
(11000)		· —		
Downy Mildew (Races: CA VII , VIII	(a1) [3]	(c1) 7	(c2) 3	
Powdery Mildew	(a1) <i>O</i>	(c1) O	(c2) O	
Sclerotinia Drop	(a1) O	(c1) O	(c2) O	
			🔼	
Bacterial Soft Rot (<i>Pseudomonas</i> spp. and others)	(a1) <u>U</u>	(c1) U	(c2) U	
Botrytis (Grey Mold)	(a1) <u>0</u>	(c1) O	(c2) O	
Verticillium Wilt	(a1) O	(c1) O	(c2) <i>O</i>	
Bacterial Leaf Spot	(a1) <i>0</i>	(c1) O	(c2) Ø	
Anthracnose	(a1) 0	(c1) <i>O</i>	(c2) <u>0</u>	
Other (Specify)	(a1)	(c1)	(c2)	
13. INSECTS:				
1 = Immune 3 = Resistant	5 = Moderately Resistant/M	oderately Susceptible	7 = Susceptible	9 = Highly Susceptible
				0 = not tested
Cabbage Loopers	(a1) U	(c1) D	(c2) 0	U and I
Root Aphids	(a1) 0	(c1) [<i>V</i>]	(62)	N.
Green Peach Aphid	(a1) O	(c1) U	(c2) [<i>U</i>]	
Lettuce Aphid	(a1) [<u></u>	(c1)	(c2)	

	·				
				#2007	0 0 1 2 0 Exhibit C (Lettuce)
	Pea Leafminer Other (Specify)	(a1) O	(c1) O	(c2) O	
14.	PHYSIOLOGICAL STRESSES:				
	1 = Immune 3 = Resistant Tipburn Heat Drought	5 = Moderately Resistant (a1) 0 (a1) 0 (a1) 0	(c1) 0 (c1) 0 (c1) 0	(1)	Highly Susceptible
5.	Cold Salt Brown Rib (Rib Discoloration, Rib Blight) Other (Specify)	(a1) <u>U</u> (a1) <u>O</u> (a1) <u>O</u> (a1) <u>O</u>	(c1) O (c1) O (c1) O	(c2) O (c2) O (c2) O	
15.	POST HARVEST STRESS:				
	1 = Immune 3 = Resistant Pink Rib Russet Spotting Rusty Brown Discoloration Internal Rib Necrosis (Blackheart, Grey Rib, Grey Streak) Brown Stain	5 = Moderately Resistant/ (a1)	(c1) O (c1) O (c1) O (c1) O (c1) O	·	Highly Susceptible = not tested

17. COMMENTS:

#200700120

SUGGESTED CHECK VARIETIES

TYPE

Cutting/Leaf

Butterhead

3 Bibb

Cos or Romain

5 **Great Lakes Group**

6 Vanguard Group

Salinas Group Eastern Group

8 Stem

10 Latin CHECK VARIETY

Waldmann's Green

Dark Green Boston

Bibb

Parris Island

Great Lakes 659-700

Vanguard

Salinas

Ithaca

Celtuce

Little Gem

REFERENCES

Bowring, J.D.C., 1969, "The Identification of Varieties of Lettuce (Lactuca Sativa L.)". Journal of the National Institute of Agricultural Botany 11:499-520. National Institute of Agricultural Botany, Cambridge, UK.

Davis, R.M., K.V. Subbarao, R.N. Raid, and E.A. Kurtz, 1997. "Compendium of Lettuce Diseases". APS Press, St. Paul, MN.

Michelmore, R.W., J. M. Norwood, D.S. Ingram, I.R. Crute and P. Nicholson. 1984. "The interitance of virulence in Bremia lactucae to match resistance factors 3, 4, 5, 6, 8, 9, 10, and 11 in lettuce (Lactuca sativa)", Plant Pathology 32:176-177.

Norwood, J.M., R.W. Michelmore, I.R. Crute and D.S. Ingram. 1983. "The inheritance of specific virulence of Bremia lactucae (Downy Mildew) to match R-factors 1, 2, 4, 6, and 11 in lettuce (Lactuca sativa)". Plant Pathology 32:176-177.

Rodenburg, C.M., et al., 1960. "Varieties of Lettuce. An International Monograph", Instituut voor de Verdeling van Tuinbouwgewassen (IVT), Wageningen, NL.

Ryder, E.J., 1999, Lettuce, Endive, and Chicory, CABI Publications, Wallingford, UK.

Exhibit C – Capsule Pictures

- Capsule Seedling measurements at 4th leaf stage: Capsule, Bambino, Seacrest

		Capsule			Bambino			Seacrest	
Plt#	Length (cm)	Width (cm)	ratio (l/w*10)	Length (cm)	Width (cm)	ratio (l/w*10)	Length (cm)	Width (cm)	ratio (I/w*10)
1	10.4	3.1	33.5	12.2	3.9	31.3	13.0	3.3	39.4
2	9.8	3.0	32.7	11.9	3.4	35.0	11.5	2.6	44.2
3	10.3	3.2	32.2	12.0	3.7	32.4	11.9	3.4	35.0
4	9.7	3.1	31.3	10.4	3.0	34.7	1 2 .2	2.9	42.1
5	11.2	3.4	32.9	11.2	3.3	33.9	12.2	3.2	38.1
6	9.8	3.8	25.8	10.9	3.1	35.2	14.0	3.4	41.2
7	10.1	3.7	27.3	10.2	2.4	42.5	12.5	2.8	44.6
8	9.6	3.0	32.0	11.3	3.5	32.3	12.6	3.3	38.2
9	11.4	3.3	34.5	11.7	3.1	37.7	13.1	3.3	39.7
10	11.1	3.6	30.8	11.4	3.8	30.0	14.0	3.9	35.9
11	9.7	2.7	35.9	10.5	2.7	38.9	12.6	2.7	46.7
12	8.6	3.2	26.9	12.0	3.3	36.4	11.9	3.2	37.2
13	9.9	3.6	27.5	11.1	4.0	27.8	13.3	3.3	40.3
14	10.0	3.0	33.3	11.3	2.8	40.4	11.9	3.2	37.2
15	10.4	3.5	29.7	10.2	3.0	34.0	12.4	2.9	42.8
16	9.3	4.3	21.6	10.0	2.8	35.7	11.9	3.8	31.3
17	9.7	3.6	26. 9	11.6	2.8	41.4	12.0	3.0	40.0
18	9.2	3.0	30.7	10.0	3.1	32.3	11.0	3.0	36.7
- 19	9.1	3.4	26.8	10.0	3.1	32.3	12.0	3.7	32.4
20	9.3	3.8	24.5	9.6	3.1	31.0	11.9	3.6	33.1
Mean	9.9	3.4	29.8	11.0	3.2	34.7	12.4	3.2	38.8
StDev	0.72	0.38	3.76	0.81	0.42	3.90	0.77	0.36	4.14

- Capsule

Quantitative Data

SJB1 SJB2 San Juan Bautista, California, REP 1 San Juan Bautista, California, REP 2 sowing: 8/31/06 idem

transplant: 10/4/06

idem

evaluation: 11/27/06

Trial	Plt#	Spread of	Frame Lea	aves (cm)	W	eight (gram	ıs)	Plar	t Diameter	(cm)	Pla	ınt Height (c	:m)
		Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule		Bambino
SJB1	1	46.3	82.5	-	298.1	527.8	-	36.0	51.4	-	28.1	41.7	-
SJB1	2	46.5	79.0	-	309.8	722.4	-	35.8	47.4	-	25.9	47.9	-
SJB1	3	47.0	77.2	-	545.6	578.0	-	42.0	54.3	-	30.8	45.8	-
SJB1	4	41.3	67.5	-	247.7	629.5	-	29.9	51.8	-	26.1	38.4	-
SJB1	5	39.8	65.8	-	249.1	489.6	-	35.5	48.2	-	22.0	40.2	-
SJB1	6	48.7	79.8	-	493.1	566.7	-	38.7	51.2	-	23.5	46.0	-
SJB1	7	45.0	65.7	-	315.0	625.2	· -	35.0	56.3	-	24.0	41.9	-
SJB1	8	45.9	77.0	-	476.4	584.1	-	41.0	49.0	-	26.1	44.8	-
SJB1	9	43.5	74.0	-	474.8	642.5		35.5	54.4	-	27.9	44.2	-
SJB1	10	41.2	71.3	-	258.9	646.3	-	35.2	50.0	-	22.0	39.1	-
SJB1	11	43.9	74.7	-	362.8	690.0	-	36.2	51.0	*	26.1	50.8	-
SJB1	12	41.9	73.1	-	331.2	663.7	-	38.5	41.9	-	27.1	45.2	-
SJB1	13	44.3	73.8	-	551.9	380.5	-	40.2	44.0	-	28.0	45.4	-
SJB1	14	43.6	70.4	-	278.9	665.9	-	36.2	54.5	-	22.0	40.2	-
SJB1	15	44.5	78.0	-	410.8	803.0	-	40.0	58.1	-	25.8	45.0	-
SJB1	16	44.0	78.3	-	375.8	711.5	-	36.6	51.6	-	25.0	45.3	-
SJB1	17	46.2	68.2	-	419.8	696.0	• •	38.5	54.1	-	25.2	42.8	-
SJB1	18	42.1	71.9	-	424.3	550.0	-	35.9	49.5	· -	26.1	41.4	-
SJB1	19	43.7	73.8	-	412.9	562.0	- [38.4	43.1	-	23.1	42.3	-
SJB1	20	43.8	74.1	-	324.0	518.7	-	40.5	46.4	-	23.6	42.0	-
SJB2	1	44.0	73.0	-	321.6	651.8	-	37.1	54.2	-	26.1	48.1	
SJB2	2	47.0	71.6	-	361.5	806.5	-	38.5	53.9	-	25.6	46.9	-
SJB2	3	48.5	73.8	-	391.9	511.1	-	42.2	49.3	-	25.9	39.1	- '
SJB2	4	45.3	72.5	- 1	374.5	562.9	-	38.0	46.8	-	25.0	40.9	-
SJB2	5	48.0	70.9	-	379.2	655.2	-	36.8	46.2	-	25.6	41.9	-
SJB2	6	48.1	66.0	-	399.5	490.9	-	38.7	49.7	· -	27.3	38.3	-
SJB2	7	48.0	69.5	-	462.8	620.5	-	44.5	57.6	-	27.2	42.2	-
SJB2	8	47.8	74.7	_	416.0	590.0	-	40.8	52.4	-	24.9	46.4	-
SJB2	9	46.5	62.4	- 1	520.1	485.8	-	44.1	53.1	-	28.7	45.6	-
SJB2	10	49.6	72.4	-	530.9	719.0	-	44.0	44.9	-	29.8	46.3	-
SJB2	11	44.8	79.5	-	419.2	576.2	-	39.2	48.0	-	24.0	44.8	-
SJB2	12	46.2	74.8	-	410.9	478.9	-	40.0	41.7	-	25.3	45.9	-
SJB2	13	47.5	70.0	-	401.2	484.4	-	36.1	42.3	-	28.0	43.9	-
SJB2	14	44.3	80.2	-	375.1	686.3	-	36.0	47.7	-	23.0	45.4	-
SJB2	15	44.9	72.0	-	394.0	523.7	-	36.5	41.1	-	24.9	44.7	-
SJB2	16	46.2	72.4		418.5	410.0	-	35.7	39.9	-	24.3	37.7	
SJB2	17	50.2	80.9	_	466.0	669.7	-	45.3	42.9	-	28.0	44.2	-
SJB2	18	47.4	74.0	- 1	357.9	796.0	-	37.5	50.8	-	23.9	47.9	-
SJB2	19	46.4	72.0	-	498.5	617.6	-	41.0	42.9	-	26.0	40.3	.
SJB2	20	51.3	75.0	٠ -	570.4	634.1		45.6	41.8	-	28.3	44.2	-
	·												
Mean SJB	1	44.2	73.8	-	378.0	612.7	-	37.3	50.4	-	25.4	43.5	-
St.Dev. SJ		2.2	4.7	-	95.9	95.9	-	2.8	4.4	-	2.3	3.1	-
Mean SJB		47.1	72.9	-	423.5	598.5	-	39.9	47.4	-	26.1	43.7	-
St.Dev. SJ	B2	1.9	4.4	-	64.8	107.6	-	3.4	5.2	-	1.8	3.1	
Mean SJB		45.6	73.3	-	400.8	605.6	-	38.6	48.9	-	25.8	43.6	-
St.Dev. SJ		2.5	4.5	-	84.0	100.8	- 1	3.3	5.0	-	2.1	3.1	-

- Capsule (continue)

Quantitative Data

St.Dev. SJB1+2

4.9

2.0

2.8

SJB1 SJB2 San Juan Bautista, California, REP 1

San Juan Bautista, California, REP 2

sowing: 8/31/06 idem

transplant: 10/4/06 idem

evaluation: 11/27/06

idem

8.5

8.3

Trial	Plt#	W	idth Leaf (c	m)	Le	ngth Leaf (d	cm)	Cor	e Length (n	nm)	Core	Diameter (mm)
		Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino
SJB1-1	1	22.9	22.1	-	22.9	37.9	-	41.0	36.2	-	22.5	24.1	-
SJB1	2	21.5	29.8	-	28.8	35.3	_	52.1	65.4	-	25.3	29.5	_
SJB1	3	22.0	20.9	_	23.9	37.0	_	49.3	53.2	_	32.1	30.1	-
SJB1	4	19.4	24.0	_	21.5	27.8	_	42.1	52.3	_	22.4	29.9	_
SJB1	5	18.7	18.7	_	19.9	30.2	-	44.8	33.7	_	22.0	21.8	-
SJB1	6	24.1	19.5	_	21.2	37.6	_	46.5	57.2	_	27.4	28.6	_
SJB1	7	20.3	20.3	_	19.8	34.1	_	48.1	51.7	_	27.5	28.6	_
SJB1	8	19.7	24.0	_	21.0	38.9	_	56.8	55.1	_	29.1	22.4	_
SJB1	9	21.8	24.4	-	24.2	33.0	-	70.6	47.3	_	28.5	24.8	_
SJB1	10	20.3	29.2		18.9	33.8	-	38.6	49.2	_	22.1	23.4	_
SJB1	11	22.6	21.5	_	21.5	39.8	-	52.1	54.9	_	26.3	27.2	_
SJB1	12	22.5	26.5	_	22.9	36.0	-	52.1	48.4	-	26.2	28.8	_
SJB1	13	22.9	29.4	-	21.5	39.6	-	59.0	40.2	_	32.8	29.2	_
SJB1	14	21.7	25.8	-	21.6	36.9	-	41.4	54.8	_	26.1	28.7	_
SJB1	15	19.8	32.4	_	19.5	33.0	-	56.3	62.0	_ [28.7	27.2	-
SJB1	16	19.0	32.4 24.4	-	22.7	39.6	- -	48.2	53.1		28.4	24.6	
SJB1	17					33.2	-	58.2	43.2	-	30.0	29.5	_
		22.0	29.3	-	22.5		-	56.2 55.0	45.2 46.0	-	29.8	28.6	-
SJB1	18	21.6	24.2	- 1	21.0	39.0 ;					29.0 29.9	28.1	_
SJB1	19	20.3	27.1	-	22.0	39.2	-	56.1	52.2	-	29.9 25.4	29.2	_
SJB1	20	18.9	25.7	-	20.5	39.6	-	46.8	54.1		27.4	26.8	
SJB2	1 1	20.4	27.5	-	21.1	35.6	-	51.3	55.2	-		29.2	-
SJB2	2	22.3	37.2	-	24.0	38.5	-	49.8	57.0	-	27.3 28.2	29.2 28.2	-
SJB2	3	20.3	23.0	-	24.0	36.3	-	56.1	39.6	-	28.2 28.1	26.2 24.1	-
SJB2	4	19.3	21.0	-	20.4	32.8	-	46.3	39.9	-		27.4	-
SJB2	5	24.8	33.9	-	22.8	37.8	-	43.4	41.8	-	28.2		-
SJB2	6	23.1	19.8	-	24.2	32.6	-	51.4	38.8	-	29.5	20.6	· -
SJB2	7	23.9	23.8	-	23.1	39.3	-	54.2	41.5	-	34.8	24.8	-
SJB2	8	23.2	26.2	-	23.9	38.8	-	54.3	53.8	-	28.7	31.2	-
SJB2	9	23.1	23.4	-	22.8	37.1	-	68.2	40.8	-	34.9	25.2	
SJB2	10	25.3	22.7	-	22.7	32.6	-	66.2	61.7		34.5	23.8	-
SJB2	11	19.3	22.5	-	21.0	36.9	-	54.8	42.4	-	31.1	25.8	-
SJB2	12	23.0	22.0	-	24.5	34.8	-	55.2	37.8	-	29.3	25.2	-
SJB2	13	22.4	25.7	-	23.8	37.9	-	52.8	41.3	-	30.0	26.8	-
SJB2	14	21.4	38.2	-	23.8	36.1	-	40.8	61.2	-	27.2	22.6	-
SJB2	15	20.7	29.9	-	19.3	38.7	-	63.1	51.5	-	27.3	25.0	-
SJB2	16	22.6	26.8	-	21.8	37.0	-	69.0	34.4	-	32.1	24.8	-
SJB2	17	23.3	20.9	-	24.8	32.2	-	58.2	35.3	-	31.3	26.5	-
SJB2	18	21.0	19.8	-	· 25.4	36.4	-	54.5	50.5	-	26.8	27.4	-
SJB2	19	21.0	33.0	- [23.0	35.8	-	71.8	47.2	-	34.5	29.2	-
SJB2	20	23.2	32.5	-	24.5	35.7	-	57.1	58.6	-	32.2	27.1	-
Mean SJB	1	21.1	25.0	- 1	21.9	36.1	- [50.8	50.5	-	27.1	27.2	-
St.Dev. SJ	B1_	1.6	3.8	-	2.1	3.4	-	7.7	7.9	-	3.2	2.7	-
Mean SJB2	2	22.2	26.5	- 1	23.0	36.1	-	55.9	46.5		30.2	26.1	-
St.Dev. SJ	B2	1.7	5.8	l	1.6	2.2		8.3	8.9	-	2.8	2.4	-
Mean SJB	1+2	21.6	25.7	-	22.5	36.1	-	53.3	48.5	-	28.6	26.7	-
	[0.0	

2.6

· Capsule

Statistical analysis: Capsule vs Seacrest

SJB1

San Juan Bautista, California, REP 1

sowing:08/31/06

transplant: 10/04/06 evaluation: 11/27/06

SJB2

n = 20, F(.05) = 3.97, F(.01) = 6.98San Juan Bautista, California, REP 2

idem

idem

Trial:			SJE	3 1	SJ	B 2
•			Capsule	Seacrest	Capsule	Seacrest
Spread of Frame I	_eaves (cm):					
Mean			44.2	73.8	47.1	72.9
Std Dev.			2.2	4.7	1.9	4.4
ANOVA (F calc.):	Rep	= 1.63 ns	+9			
	Var	= 1232.4 **				•
	Rep x Var	= 6.00 *				
Weight (grams):						
Mean			378.0	612.7	423.5	598.5
Std Dev.			95.9	95.9	64.8	107.6
ANOVA (F calc.):	Rep	= 0.57 ns				
	Var	= 98.25 **				
	Rep x Var	= 2.08 ns				
Plant Diameter (cr	n):		·			
Mean			37.3	50.4	39.9	47.4
Std Dev.			2.8	4.4	3.4	5.2
ANOVA (F calc.):	Rep	= 0.063 ns			4	
	Var	= 131.5 **	•			•
	Rep x Var	= 9.88 **				
Plant Height (cm):						
Mean	-		25.4	43.5	26.1	43.7
Std Dev.			2.3	3.1	1.8	3.1 :
ANOVA (F calc.):	Rep	= 0.56 ns				
	Var	= 911.5 **				
	Rep x Var	= 0.15 ns				
Width Leaf (cm):						
Mean			21.1	25.0	22.2	26.5
Std Dev.			1.6	3.8	1.7	5.8
ANOVA (F calc.):	Rep	= 2.59 ns				
	Var	= 25.3 **				
	Rep x Var	= 0.08 ns				
Length Leaf (cm):						
Mean			21.9	36.1	23.0	36.1
Std Dev.			2.1	3.4	1.6	2.2
ANOVA (F calc.):	Rep	= 1.26 ns				
-	Var	= 625.3 **				
	Rep x Var	= 0.99 ns				
Core Height (mm):						
Mean		٠	50.8	50.5	55.9	46.5
Std Dev.			7.7	7.9	8.3	8.9
ANOVA (F calc.):	Rep	= 0.10 ns				
-	Var	= 6.93 *				
_	Rep x Var	= 6.24 *				
Core Diameter (mn	<u>n):</u>					
Vlean			27.1	27.2	30.2	26.1
Std Dev.			3.2	2.7	2.8	2.4
ANOVA (F calc.):	Rep	= 2.35 ns				
•	Var	= 10.2 **				
	Rep x Var		•			

- Capsule

Quantitative Data

SJB3 EZ, San Juan Bautista, California, REP 1

SJB4 EZ, San Juan Bautista, California, REP 2

sowing: 2/6/2007

idem

2007 evaluation: 5/4/2007

Trial	Plt#	Spread of	f Frame Le	aves (cm)	W	eight (gran	ıs)	Plan	t Diameter	(cm)	Plant Height (cm)		
		Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino
SJB3	1	47.1	76.2	62.2	793.3	1148.7	994.1	33.2	57.8	42.8	27.1	45.8	39.1
SJB3	2	40.8	80.5	68.2	833.7	1147.0	940.0	33.5	52.2	46.9	24.3	46.2	40.1
SJB3	3	45.3	85.4	68.6	571.8	1151.6	1152.3	33.6	61.9	44.7	23.1	48.7	40.0
SJB3	4	46.5	82.7	64.8	1082.7	1091.3	941.1	42.1	58.0	43.8	29.1	46.7	39.6
SJB3	5	49.0	89.8	68.3	863.6	1240.0	1024.2	37.9	56.3	43.0	28.7	51.5	38.9
SJB3	6	49.8	75.8	65.5	936.7	1246.3	819.7	45.7	68.0	45.3	30.6	46.0	35.4
SJB3	7	45.1	92.6	72.2	925.0	957.4	1110.8	37.5	59.0	45.3	26.6	46.8	39.0
SJB3	8	50.0	80.8	71.2	925.8	1143.6	1086.0	36.9	54.1	42.1	31.0	43.5	36.5
SJB3	9	49.8	78.3	69.5	1116.9	936.2	937.8	36.2	55.7	42.3	32.4	41.4	37.7
SJB3	10	44.5	76.2	69.3	739.0	970.8	1147.6	36.5	66.2	42.8	31.0	39.5	34.9
SJB3	11	49.9	92.7	70.8	850.6	897.9	831.0	41.8	58.7	41.8	33.2	43.8	40.5
SJB3	12	51.8	91.9	71.2	930.4	1019.6	1226.4	37.2	53.1	50.0	34.1	47.2	36.3
SJB3	13	51.8	79.8	67.0	969.3	1162.2	977.2	35.8	59.9	42.1	34.1	45.0	35.4
SJB3	14	45.0	91.5	75.1	696.6	958.8	1216.5	39.0	58.6	43.8	27.8	43.4	38.0
SJB3	15	45.0	84.6	69.8	801.8	1096.5	1189.7	34.7	60.6	46.7	30.0	45.1	38.4
SJB3	16	44.8	95.4	72.5	803.5	1411.2	1501.1	38.5	61.7	47.3	30.3	49.3	35.5
SJB3	17	49.5	79.8	67.2	1176.4	1033.1	1013.0	36.8	57.7	45.2	31.5	41.5	37.9
SJB3	18	50.5	80.8	68.0	953.0	1020.3	1151.9	35.3	55.8	44.5	32.6	39.8	38.8
SJB3	19	50.0	80.3	68.5	1058.6	944.2	1154.3	38.3	55.4	42.0	31.1	45.8	39.8
SJB3	20	45.3	85.3	66.6	957.6	1330.8	1264.4	35.4	62.6	42.8	27.5	48.2	37.3
SJB4	1	50.2	81.6	75.3	956.4	1107.8	1164.6	39.2	56.8	45.8	33.4	44.1	42.8
SJB4	2	49.0	83.4	76.6	1124.8	910.0	924.6	38.4	56.7	41.9	32.2	42.9	44.9
SJB4	3	51.0	78.8	65.8	1002.6	1163.8	863.3	38.4	56.2	45.5	30.2	42.4	37.4
SJB4	4	49.9	74.5	73.7	777.8	1126.8	1082.0	40.7	53.4	46.0	30.6	44.0	39.0
SJB4	5	46.7	84.3	74.0	879.8	1183.2	1372.3	39.0	53.0	44.0	30.0	46.8	38.7
SJB4	6	49.0	83.3	71.8	907.5	1161.4	1096.2	38.7	62.2	46.2	30.3	47.8	35.9
SJB4	7	41.0	81.4	69.4	627.0	1155.3	1058.5	33.6	62.1	48.2	27.0	46.7	37.9
SJB4	8	44.2	86.0	74.7	864.3	944.6	1135.7	37.5	59.6	42.1	30.5	46.9	39.8
SJB4	9	44.0	77.5	75.1	791.8	1141.3	1094.8	36.0	51.5	43.0	29.5	47.2	37.7
SJB4	10	45.9	78.3	73.5	696.2	850.5	1231.7	38.1	56.0	44.2	28.4	43.6	38.2
SJB4	11	45.9	85.5	63.2	845.7	844.2	1196.1	38.0	52.8	47.0	28.1	43.5	35.9
SJB4	12	45.6	71.7	67.9	692.6	950.7	1099.3	37.0	50.1	46.5	28.3	43.2	35.6
SJB4 SJB4	13	47.6	87.8	63.8	773.2	1183.0	895.5	34.2	59.8	40.5	28.5	46.3	33.3
SJB4 SJB4	14	46.5	79.0	69.1	896.3	968.9	1168.2	34.2 33.5	56.2	42.7 47.8	32.7	46.0	36.3
SJB4 SJB4	15	46.8	79.0 84.8	67.5	751.8	1362.9	968.0	35.5 35.4	62.7	44.2	30.6	51.9	36.0
SJB4 SJB4	16	48.0	78.2	75.0	687.5	1302.9	1260.1	35. 4 38.3	62.7 57.9	44.2 40.7	30.6 27.8	31.9 41.0	40.4
SJB4 SJB4	17	46.0 44.6	86.9	80.0								45.0	40.4
SJB4 SJB4	18	44.6 46.8	82.0	67.7	770.4 760.0	986.9 1132.2	1211.7	39.2	57.7	47.1 43.6	29.5 29.4	45.0 45.0	40.6 35.8
SJB4 SJB4	19	46.6 46.7	88.8	74.6			1020.5	36.2	51.4			45.0 47.3	ან.ი 38.9
					1119.4	1011.2	1135.3	34.5	57.2	45.1	31.4		
SJB4	20	52.5	82.8	72.9	1263.2	1032.8	1230.0	37.7	52.6	46.1	33.0	46.6	37.0
Mean SJB	3	47.6	84.0	68.8	899.3	1095.4	1084.0	37.3	58.7	44.3	29.8	45.3	38.0
St.Dev. S.	JB3	3.0	6.2	2.9	146.9	139.5	162.1	3.1	4.1	2.2	3.0	3.1	1.8
Mean SJB	4	47.1	81.8	71.6	859.4	1075.9	1110.4	37.2	56.3	44.9	30.1	45.4	38.1
St.Dev. S.		2.7	4.5	4.5	165.7	141.2	129.6	2.1	3.8	2.1	1.8	2.4	2.7
Mean SJB		47.3	82.9	70.2	879.4	1085.7	1097.2	37.2	57.5	44.6	29.9	45.3	38.0
St.Dev. SJ		2.8	5.5	4.0	155.8	138.9	145.5	2.6	4.0	2.1	2.5	2.8	2.3

- Capsule (continue)

Quantitative Data

SJB3 SJB4 EZ, San Juan Bautista, California, REP 1

EZ, San Juan Bautista, California, REP 2

sowing: 2/6/2007

idem

evaluation: 5/4/2007

idem

	PIt#	Con	e Length (i	mm)	Core	Diameter	(mm)	suckers (#	t basal side	e shoots)
		Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino
SJB3	1	103.3	94.0	112.8	39.0	40.0	33.9	5	1	0
SJB3	2	89.0	97.5	97.4	40.9	38.7	35.3	4	2	0
SJB3	3	100.0	98.0	110.6	36.2	34.2	36.0	2	0	0
SJB3	4	107.4	80.2	89.4	39.2	35.0	36.4	3	0	0
SJB3	5	120.8	99.8	93.3	38.0	39.6	36.9	3	4	0
SJB3	6	120.5	93.0	90.8	41.6	37.8	39.4	3	0	0
SJB3	7	108.7	87.8	98.0	40.0	36.5	37.8	3	0	0
SJB3	8	121.5	88.1	93.2	41.1	40.5	39.3	4	2	0
SJB3	9	123.2	77.9	95.7	38.9	40.9	36.3	4	0	0
SJB3	10	121.6	74.5	106.6	38.6	38.0	35.5	4	0	0
SJB3	11	120.8	76.5	97.7	36.4	38.2	32.6	4	0	0
SJB3	12	118.5	88.5	102.8	42.5	40.7	38.0	4	1	2
SJB3	13	131.4	92.1	94.3	39.0	39.2	35.0	5	2	0
SJB3	14	91.6	83.0	100.3	39.0	37.0	39.4	4	0	2
SJB3	15	130.3	80.0	108.5	38.9	36.1	35.6	5	0	0
SJB3	16	111.7	109.7	115.2	39.0	41.0	40.5	5	4	1
SJB3	17	127.9	70.0	95.8	43.2	31.1	44.3	6	0	0
SJB3	18	129.2	84.4	101.4	39.6	36.8	37.1	4	0	1
SJB3	19	107.0	90.2	119.5	40.9	37.2	40.2	5	0	0
SJB3	20	112.8	112.7	123.2	36.0	41.1	37.2	. 5	4	0
SJB4	1	134.8	84.2	110.0	38.5	36.5	37.8	3	0	0
SJB4	2	135.1	96.6	108.5	41.2	39.3	35.3	5	0	0
SJB4	3	125.9	106.2	103.4	41.0	40.5	32.5	5	2	0
SJB4	4	114.7	106.5	98.8	37.2	37.6	43.3	2	0	0
SJB4	5	121.4	112.2	108.7	37.6	39.1	39.1	3	0	0
SJB4	6	102.8	95.0	102.2	40.8	37.5	44.9	5	0	0
SJB4	7	103.0	106.0	96.5	34.6	38.0	35.5	3	1	0
SJB4	8	115.5	93.1	102.4	39.6	33.2	36.9	5	0	0
SJB4	9	106.3	74.6	97.4	37.0	42.2	34.8	4	1	0
SJB4	10	106.5	74.4	105.5	36.6	33.8	36.9	4	0	0
SJB4	11	98.2	76.1	104.2	36.0	35.9	42.1	5	1	0
SJB4	12	109.8	86.7	101.3	58.2	35.7	40.8	4	3	0
SJB4	13	110.0	114.3	97.8	34.8	39.3	33.7	6	1	0
SJB4	14	133.1	91.9	115.3	39.0	40.7	36.5	5	1	1
SJB4	15	105.5	123.2	88.8	38.3	39.2	44.7	4	2	0
SJB4	16	111.3	108.3	106.5	36.0	41.8	38.4	2	2	0
SJB4	17	109.5	98.0	118.2	41.6	36.0	34.7	3	0	0
SJB4	18	118.4	97.4	95.0	37.0	38.2	37.8	4	1	0
SJB4	19	120.5	99.8	95.8	38.7	42.8	36.8	5	0	0
SJB4	20	134.7	75.8	104.8	39.5	36.3	40.2	6	0	1
	.,									
Mean SJB3		114.9	88.9	102.3	39.4	38.0	37.3	4.1	1.0	0.3
St.Dev. SJE		12.3	11.2	9.8	1.9	2.6	2.7	1.0	1.5	0.7
Mean SJB4		115.9	96.0	103.1	39.2	38.2	38.1	4.2	8.0	0.1
St.Dev. SJE		11.7	14.1	7.1	4.9	2.7	3.6	1.2	0.9	0.3
Mean SJB3		115.4	92.5	102.7	39.3	38.1	37.7	4.1	0.9	0.2
St.Dev. SJE	33+4	11.9	13.1	8.4	3.7	2.6	3.1	1.1	1.2	0.5

additions

: - Capsule (continue)

Quantitative Data

SJB5 EZ, San Juan Bautista, California, REP 1

SJB6 EZ, San Juan Bautista, California, REP 2

sowing: 2/20/2007 evaluation: 5/23/2007

idem idem

Trial Plant Height (cm) Spread of Frame Leaves (cm) Weight (grams) Plant Diameter (cm) Capsule Seacrest Bambino Capsule Seacrest Bambino Capsule Seacrest Bambino Capsule Seacrest Bambino SJB5 1 43.9 82.5 67.2 1124.2 1438.5 1334.9 36.7 56.6 43.5 34.0 45.7 35.3 SJB5 2 1136.2 1466.3 53.2 43.9 48.1 82.4 61.8 1228 7 39.9 42.6 34.3 60.4 SJB5 3 39.8 83.1 955.7 1501.6 1188.4 47.5 38.3 35.1 47.1 31.9 67.1 32.4 \$JB5 4 43.0 83.5 65.0 1216.7 1440.5 1017.1 32.6 44.2 42.1 36.3 48.6 33.2 5 SJB5 41.6 88.1 67.9 1249.8 1523.3 1382.8 36.1 48.9 40.9 32.9 54.4 39.5 6 SJB5 35.7 46.2 82.0 68.3 1236.6 1684.3 1052.2 36.2 58.7 40.5 34.5 48.7 7 SJB5 40.5 70.1 1008.3 1043.7 46.5 34.6 61.4 1080.0 35.0 48.2 40.1 32.7 SJB5 8 32.3 39.8 1018.4 1236.5 84.8 67.8 1390.5 36.2 46.3 40.9 28.6 48.0 SJB5 9 44.2 70.1 65.3 1241 2 1868.8 1305.9 61.3 40.2 48 4 40.9 37.6 32.3 SJB5 10 43.9 85.5 71 2 1325.5 1374.8 1290.4 44 7 34.8 46.9 35.1 37 2 44 7 SJB5 11 41.7 87.4 69.1 936.8 1292.8 1467.0 52.4 43.8 33.9 48.3 36.7 37.0 SJB5 12 40.5 73.2 69.9 951.4 1194.3 1461.2 32.3 50.9 41.3 31.7 35.7 38.7 SJB5 13 45.7 1306.9 77.9 70.3 1129.0 1370.1 38.3 47.6 41.2 34.5 41.1 34.9 SJB5 14 37.6 86.0 835.5 1652.2 1645.9 33.4 67.0 33.6 51.1 41.2 31.1 45.0 SJB5 15 43.2 89.7 66.8 994.1 1405.0 1282.1 33.7 34.5 33.2 55.4 41.7 45.2 SJB5 16 44.9 85.7 67.2 1051.4 1570.8 1278.5 34.7 46.9 44.0 32.8 52.8 39.1 SJB5 17 42.7 86.3 68.1 934.1 1341.8 1488.6 32.5 41.7 40.2 33.1 45.7 36.7 SJB5 18 40.2 78.4 65.0 1180.0 1300.0 1008.7 35.3 49.2 40.8 32.0 43.9 37.7 SJB5 19 40.5 38.2 87.3 61.9 907.5 1482.5 1594.3 35.6 48.0 48.7 30.3 49.2 20 SJB5 43.2 85.5 64.5 1377.6 1441.7 1132.0 40.1 50.8 40.1 37.2 48.6 35.6 SJB6 44.7 77.3 1 60.9 1335.8 1101.5 1064.2 37.4 52.2 41.6 34.1 50.2 36.7 SJB6 2 40.6 68.2 40.9 42.0 65.3 861.3 1705.7 1300.5 34.1 52.8 28.9 43.4 SJB6 3 46.4 77.5 1337.4 39.6 66.7 1001.8 1303.1 49.1 41.8 31.8 45.2 34.3 4 SJB6 45.7 79.3 65.2 980.0 1298.7 1069.4 32.8 47.0 40.3 32.5 41.9 35.2 SJB6 5 43.2 76.1 63.3 1100.0 1556.6 1360.5 33.1 53.7 41.8 33.7 57.0 35.3 6 SJB6 42.9 73.5 69.1 1347.7 995.4 1360.0 35.2 43.2 44.7 35.1 41.2 32.0 SJB6 7 49.4 79.3 35.1 63.9 1139.1 1612.0 1247.2 39.2 54.5 40.3 35.1 49.7 SJB6 8 46.7 71.8 67.4 1055.0 1134.2 1124.5 35.6 54.1 41.0 33.8 43.9 39.6 SJB6 9 44.8 76.1 917.5 1367.7 1417.0 49.8 42.4 33.9 38.9 65.8 34.6 45.1 SJB6 10 40.8 74.0 62.6 1084.5 1106.4 1358.3 32.7 42.5 41.2 31.4 43.7 34.1 SJB6 11 46.5 77.6 63.8 1208.9 1650.4 1215.9 36.4 55.7 47.2 30.7 43.2 39.8 12 SJB6 40.2 81.3 64.0 1206.0 1677.2 1278.6 34.6 55.1 43.5 32.9 48.2 38.3 SJB6 13 44.0 95.1 61.6 938.8 1241.5 1277.4 33.0 51.2 39.8 31.2 58.0 33.7 SJB6 37.6 14 52.7 85.2 69.5 1128.6 1579.5 1198.0 37.8 58.3 43.7 39.1 47.4 SJB6 15 40.9 66.3 33.4 55.7 972.3 1172.7 39.9 30.8 40.8 1432.4 34.9 47.9 SJB6 16 41.3 95.8 69.3 1083.4 2004 4 30.4 59.3 33.9 1271.2 34.2 59.7 40.1 SJB6 17 41.6 77.8 68.2 1125.8 1935.6 34.2 1253.8 34.7 52.8 40.0 32.5 50.2 SJB6 18 42.8 88.7 60.6 894.4 1407.9 32.3 32.8 987.4 35.8 53.7 40.6 54.4 SJB6 19 37.4 81.4 64.1 1044.5 1177.5 39.5 36.9 42.1 32.7 1113 4 34.9 49 9 20 SJB6 46.5 88.3 74.9 936.8 1822.3 1258.7 36.3 48.5 38.4 29.1 48.3 32.3 Mean SJB5 42.6 82.5 1099.4 1419.4 1300.0 66.6 35.6 50.2 41.8 33.3 47.5 36.4 St.Dev. SJB5 195.0 2.6 5.7 2.8 160.0 183.3 2.4 5.0 2.3 2.0 4.9 3.0 Mean SJB6 44.0 79.5 65.1 1068.1 1444.2 1244.6 47.7 35.9 35.1 51.6 41.4 32.8 St.Dev. SJB6 3.6 7.9 2.5 3.0 4.1 136.5 297.1 121,1 1.7 4.5 2.1 5.7 Mean SJB5+6 43.3 81.0 65.9 1083.8 1431.8 1272.3 35.4 50.9 41.6 33.1 47.6 36.1 3.1 7.0 St.Dev. SJB5+6 3.5 147.6 248.4 155.9 2.1 4.7 2.1 2.3 5.3 3.0

- Capsule (continue)

Quantitative Data

SJB5

EZ, San Juan Bautista, California, REP 1

SJB6

EZ, San Juan Bautista, California, REP 2

sowing: 2/20/2007 evaluation: 5/23/2007

idem

Trial	Plt#	Cor	e Length (i	mm)	Core	Diameter	(mm)
			Seacrest		Capsule		
SJB5	1	214.0	122.1	162.7	42.2	47.0	50.4
SJB5	2	184.1	141.5	155.5	43.8	45.6	48.1
SJB5	3	181.6	144.8	173.4	43.2	45.3	47.6
SJB5	4	235.2	130.0	147.5	41.1	48.9	39.8
SJB5	5	170.5	147.9	172.3	41.2	45.3	44,7
SJB5	6	175.3	176.0	195.2	42.4	48.1	40.4
SJB5	7	174.1	125.1	188.2	42.7	41.9	50.8
SJB5	8	155.8	188.7	181.9	43.1	44.5	49.3
SJB5	9	178.7	169.4	156.4	45.1	53.2	43.8
SJB5	10	184.6	146.2	163.5	45.1	50.5	51.0
SJB5	11	158.6	132.3	165.0	40.2	46.4	49.2
SJB5	12	181.3	138.2	188.6	44.4	51.0	39.8
SJB5	13	191.4	135.5	175.9	45.6	47.9	49.1
SJB5	14	164.8	135.5	195.8	40.9	47. 9 45.5	50.9
SJB5	15	173.2	134.9	195.8			
SJB5	16	158.4	160.3	169.5	45.0 42.3	42.9	51.0
SJB5	17.	205.6	180.6	161.9	42.3 41.9	44.6 50.0	46.6 44.3
SJB5	18						
SJB5	19	204.9 168.2	143.2 160.4	147.9 134.7	43.4	50.1	45.4
SJB5	20	210.5			47.7	51.6 47.9	45.2
SJB6	1	174.0	147.7 131.5	149.5	43.5 46.2	47.9	38.9
SJB6	2			164.5 150.2			51.0
SJB6	3	153.6 162.2	146.9 134.3	75.8	42.7 41.9	44.0	50.2
	4	189.4	134.3			43.6	45.1
SJB6	5			160.6	43.6	49.8	47.9
SJB6	6	206.8	149.4	183.9	45.3	36.9	47.5
SJB6	7	201.4	142.6	165.4	42.5	44.7	45.3
SJB6	8	184.5	138.4	157.1	43.2	47.4	50.9
SJB6	1	199.6	130.5	165.7	47.1	49.0	44.5
SJB6	9	166.8	172.6	174.0	49.7	46.2	38.9
SJB6	10	174.3	137.8	167.2	42.6	46.2	47.1
SJB6	11	191.7	136.9	161.8	47.2	46.7	47.8
SJB6	12	120.0	164.7	181.1	44.3	50.2	44.2
SJB6	13	178.5	170.9	139.9	40.8	48.1	45.8
SJB6	14	157.2	170.4	168.5	43.1	50.6	49.6
SJB6	15	188.6	127.9	178.4	45.5	42.3	50.0
SJB6	16	196.1	174.8	170.6	41.4	50.1	48.7
SJB6	17	168.4	143.7	181.3	43.0	48.2	42.3
SJB6	18	182.3	158.1	141.2	43.2	44.2	32.8
SJB6	19	209.5	106.1	159.0	50.3	44.2	52.4
SJB6	20	128.9	202.9	162.8	48.6	53.0	46.0
Mana O Inc	<u>- </u>	400.5	440.0	407.4	40.0	4=7 +	10.5
Mean SJB5		183.5	148.2	167.1	43.2	47.4	46.3
St.Dev. SJB5		21.0	18.6	16.9	1.9	3.0	4.1
Mean SJB(- 1	176.7	148.6	160.5	44.6	46.4	46.4
St.Dev. SJB6		24.0	22.1	23.3	2.8	3.7	4.6
Mean SJB:		180.1	148.4	163.8	43.9	46.9	46.4
St.Dev. SJ	00-0	22.5	20.2	20.3	2.4	3.4	4.3

-- Capsule

Statistical analysis: Capsule vs Seacrest

SJB3

·

San Juan Bautista, California, REP 1 n = 20, F(.05) = 3.97, F(.01) = 6.98 sowing: 2/6/2007

evaluation: 5/4/2007

SJB4

San Juan Bautista, California, REP 2

idem

idem

	idem					
Trial:				B3		IB4
			Capsule	Seacrest	Capsule	Seacrest
Spread of Frame L	_eaves (cm):					
Mean			47.6	84.0	47.1	81.8
Std Dev.	-		3.0	6.2	2.7	4.5
ANOVA (F calc.):	Rep	= 1.90 ns				
	Var	= 1347.3 **				
	Rep x Var	= 0.78 ns				
Weight (grams):						
Mean			899.3	1095.4	859.4	1075.9
Std Dev.			146.9	139.5	165.7	141.2
ANOVA (F calc.):	Rep	= 0.80 ns				
	Var	= 38.5 **				
	Rep x Var	= 0.09 ns				
Plant Diameter (cn	<u>n):</u>			•		
Mean			37.3	58.7	37.2	56.3
Std Dev.			3.1	4.1	2.1	3.8
ANOVA (F calc.):	Rep	= 2.78 ns				
	Var	= 735.9 **				
	Rep x Var	= 2.28 ns				
Plant Height (cm):						
Mean			29.8	45.3	30.1	45.4
Std Dev.			3.0	3.1	1.8	2.4
ANOVA (F calc.):	Rep	= 0.12 ns				
, ,	Var	= 670.8 **				
	Rep x Var	= 0.009 ns				
Core Height (mm):			•			
Mean			114.9	88.9	115.9	96.0
Std Dev.			12.3	11.2	11.7	14.1
ANOVA (F calc.):	Rep	= 2.14 ns				
	Var	= 68.2 **				
	Rep x Var					
Core Diameter (mr		***************************************				
Mean			39.4	38.0	39.2	38,2
Std Dev.			1.9	2.6	4.9	2.7
ANOVA (F calc.):	Rep	= 0.001 ns		0		
	Var	= 2.75 ns				
	Rep x Var					
Suckers # (basal si		0.00 110				
Vlean			4.1	1.0	4.2	0.8
Std Dev.			1.0	1.5	1.2	0.9
ANOVA (F calc.):	Rep	= 0.15 ns	1.0	1.0	1,4	0.0
into the follows.	Vаг	= 157.3 **				
	Rep x Var					
	<u>'</u>			** = cignificant differe		

ns = not significant different, * = significant different at .05 prob level, ** = significant different at .01 prob level

- Capsule (continue) Statistical analysis: Capsule vs Bambino

\$JB3

San Juan Bautista, California, REP 1

sowing: 2/6/2007

evaluation: 5/4/2007

SJB4

n =20, F(.05) = 3.97, F(.01) = 6.98 San Juan Bautista, California, REP 2

idem

Trial:			S.	В3	SJ	B4
			Capsule	Bambino	Capsule	Bambino
Spread of Frame L	eaves (cm):					
Mean			47.6	68.8	47.1	71.6
Std Dev.			3.0	2.9	2.7	4.5
ANOVA (F calc.):	Rep	= 2.28 ns				
	Var	= 921.6 **				
	Rep x Var	= 4.61 *				
Weight (grams):	· · · · · · · · · · · · · · · · · · ·					
Mean			899.3	1084.0	859.4	1110.4
Std Dev.			146.9	162.1	165.7	129.6
ANOVA (F calc.):	Rep	= 0.04 ns				
(,	Var	= 41.2 **				
	Rep x Var					
Plant Diameter (cm	 					
Mean	<u></u>		37.3	44.3	37.2	44.9
Std Dev.			3.1	2.2	2.1	2.1
ANOVA (F calc.):	Rep	= 0.23 ns	5.7	_,_		
,	Var	= 186.8 **				
	Rep x Var					
Plant Height (cm):	rtop x va.	0.401.0				
Mean			29.8	38.0	30.1	38.1
Std Dev.			3.0	1.8	1.8	2.7
ANOVA (F calc.):	Rep	= 0.15 ns	0.0	1.0	1.0	2.7
ANOVA (I Calc.).	Var	= 229.1 **				
Core Height (mm):	Rep x vai	= 0.012 ns		· · · · · · · · · · · · · · · · · · ·		
Mean			114.9	102.3	115.9	103.1
Std Dev.						7,1
	D	6 d d	12.3	9.8	11.7	7.1
ANOVA (F calc.):	Rep	= 0.14 ns				
	Var	= 29.5 **				
O Di		= 0.003 ns				
Core Diameter (mm	<u>1):</u>		00.1	0.77	00.0	00.4
Mean			39.4	37.3	39.2	38.1
Std Dev.	_		1.9	2.7	4.9	3.6
ANOVA (F calc.):	Rep	= 0.13 ns				
	Var	= 3.99 *				
	Rep x Var	= 0.45 ns				
Suckers # (basal si	<u>de shoots)</u>					
Mean			4.1	0.3	4.2	0.1
Std Dev.			1.0	0.7	1.2	0.3
ANOVA (F calc.):	Rep	= 0.16 ns				
	Var	= 308.1 **				
	Rep x Var	= 0.31 ns				

ns = not significant different, * = significant different at .05 prob level, ** = significant different at .01 prob level

; - Capsule (continue) Statistical analysis: Capsule vs Seacrest

SJB5

San Juan Bautista, California, REP 1

sowing: 2/20/2007

evaluation: 5/23/2007

SJB6

n =20, F(.05) = 3.97, F(.01) = 6.98 San Juan Bautista, California, REP 2

idem

	idem					
Trial:			Su	JB5	SJ	IB6
			Capsule	Seacrest	Capsule	Seacrest
Spread of Frame I	<u>_eaves (cm):</u>					
Mean			42.6	82.5	44.0	79.5
Std Dev.			2.6	5.7	3.6	7.9
ANOVA (F calc.):	Rep	= 0.42 ns				
	Var	= 999.3 **				
	Rep x Var	= 3.30 ns				
Weight (grams):						
Mean			1099.4	1419.4	1068.1	1444.2
Std Dev.			160.0	195.0	136.5	297.1
ANOVA (F calc.):	Rep	= 0.005 ns				
•	Var	= 56.8 **				
	Rep x Var					
Plant Diameter (cn	<u>n):</u>					
Mean			35.6	50.2	35.1	51.6
Std Dev.			2.4	5.0	1.7	4.5
ANOVA (F calc.):	Rep	= 0.28 ns				
	Var	= 363.3 **				
	Rep x Var	= 1.43 ns				
Plant Height (cm):						
Mean			33.3	47.5	32.8	47.7
Std Dev.			2.0	4.9	2.5	5.7
ANOVA (F calc.):	Rep	= 0.03 ns			+	
,	Var	= 249.5 **				
	Rep x Var					
Core Height (mm):			*****			
Mean			183.5	148.2	176.7	148.6
Std Dev.			21.0	18.6	24.0	22.1
ANOVA (F calc.):	Rep	= 0.45 ns	*	10.5	2	LL. 1
	Var	= 43.3 **				
	Rep x Var					
Core Diameter (mn		2.07 110				
Mean			43.2	47.4	44.6	46.4
Std Dev.			1.9	3.0	2.8	3.7
ANOVA (F calc.):	Rep	= 0.09 ns	1,0	3.0	2.0	J.1
٧/ (1 0410.).	Var	= 21.2 **				
	Rep x Var					
				** = significant differe		

ns = not significant different, * = significant different at .05 prob level, ** = significant different at .01 prob level

- Capsule (continue) Statistical analysis: Capsule vs Bambino

SJB5

San Juan Bautista, California, REP 1

sowing: 2/20/2007

evaluation: 5/23/2007

SJB6

n = 20, F(.05) = 3.97, F(.01) = 6.98San Juan Bautista, California, REP 2

idem

idem

Trial:			Su	B5	SJ	B6
			Capsule	Bambino	Capsule	Bambino
Spread of Frame L	eaves (cm):					
Mean			42.6	66.6	44.0	65.1
Std Dev.			2.6	2.8	3.6	4.1
ANOVA (F calc.):	Rep	= 0.01 ns				
	Var	= 934.3 **				
	Rep x Var					
Weight (grams);						
Mean			1099.4	1300.0	1068.1	1244.6
Std Dev.			160.0	183.3	136.5	121.1
ANOVA (F calc.):	Rep	= 1.63 ns				
·	Var	= 30.7 **				
	Rep x Var	= 0.13 ns				
Plant Diameter (cm	<u>)):</u>					
Mean			35.6	41.8	35.1	41.4
Std Dev.			2.4	2.3	1.7	2.1
ANOVA (F calc.):	Rep	= 1.01 ns				
•	Var	= 176.3 **	~			
	Rep x Var	= 0.02 ns				
Plant Height (cm):						
Mean			33.3	36.4	32.8	35.9
Std Dev.			2.0	3.0	2.5	3.0
ANOVA (F calc.):	Rep	= 0.73 ns				
·	Var	= 26.7 **				
	Rep x Var	= 0.002 ns				
Core Height (mm):	•	,				
Mean			183.5	167.1	176.7	160.5
Std Dev.			21.0	16.9	24.0	23.3
ANOVA (F calc.):	Rep	= 1.99 ns			•	
	Var	= 11.6 **				
	Rep x Var	= 0.0002 ns				
Core Diameter (mn						
Viean			43.2	46.3	44.6	46.4
Std Dev.			1.9	4.1	2.8	4.6
ANOVA (F calc.):	Rep	= 0.87 ns		***		
. ,	Var	= 9.68 **				
	Rep x Var					

ns = not significant different, * = significant different at .05 prob level, ** = significant different at .01 prob level

- Capsule Bolting measurements

Location		Enza Zaden,	, San Juan B	autista, Calife	ornia	sowing: 1/5/	07	transplant:	2/16/07	
Plt#	\Box	#Days S	Seed Stalk Em	ergence	Heigh	t Mature Seed	Stalk	Spr	ead of Bolter I	Plant
		Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino
	1	106	110	110	120.6	134.3	153.2	26.1	26.5	23.1
	2	100	105	112	127.1	159.1	167.3	34.5	33.2	25.2
	3	98	109	106	119.6	157.1	135.8	30.5	27.5	26.3
	4	98	106	108	136.8	176.2	163.1	35.9	38.3	30.8
	5	-	106	106	-	148.7	153.2	-	28.2	27.4
	6	104	111	108	129.2	153.1	167.3	30.6	23.3	25.3
	7	113	111	106	140.6	138.7	155.2	37.5	20.2	28.1
	8	113	106	108	129.2	136.1	145.3	33.0	27.3	27.9
	9	101	105	105	129.4	164.4	162.5	34.8	35.0	30.3
	10	10 4	111	108	134.1	165.3	165.4	35.2	32.2	28.3
	11	110	111	108	143.1	171,3	152.5	35.4	26.1	24.4
	12	101	110	108	140.6	184.4	153.1	34.3	32.8	38.5
	13	108	111	108	140.4	185.4	137.5	37.5	37.6	25.4
	14	108	113	106	139.3	184.5	157.1	33.9	33.1	26.2
	15	101	113	105	132.5	187.0	154.2	34.8	25.3	27.2
Mean		105	109	108	133.0	163.0	154.8	33.9	29.8	27.6
St.Dev.		5.1	2.7	1.8	7.5	18.4	9.7	3.0	5.3	3.7

Location	Enza Zad	en, San Juan B	autista, Calif	ornia	sowing: 2/6/	2007 (direct)				
Pit#	#Day	#Days Seed Stalk Emergence			Height Mature Seed Stalk			Spread of Bolter Plant		
	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	Capsule	Seacrest	Bambino	
	1 114	-	126	104.3	-	137.6	49.2	-	31.4	
	2 116	-	128	127.4	-	163.3	47.1	-	33.8	
	3 122	136	126	149.9	65.8	142.1	41.5	27.2	28.4	
	4 115	136	133	124.4	109.5	142.6	47.6	26.2	21.6	
	5 119	131	-	107.1	152.8	_	24.7	37.2	-	
	6 122	135	127	120.5	120.1	90.8	30.9	12.1	23.1	
	7 118	133	125	96.8	138.8	94.1	23.4	41.6	20.2	
	8 119	132	126	90.2	143.2	157.1	42.4	31.9	43.2	
	9 118	135	-	66.2	105.4	-	21.8	30.3	_	
1	0 118	138	122	67.2	171.2	155.8	12.1	29.8	36.2	
1	1 114	123	133	120.4	151.7	160.1	43.6	29.8	31.5	
1:	2 113	122	120	96.4	114.2	99.7	29.5	34.1	17.2	
1:	3 113	-	126	71.6	-	121.4	20.4	_	19.5	
1.	4 113	131	131	84.2	132.8	_	25.7	30.6	_	
1:	5 116	131	-	93.1	127.2	-	33.8	26.8	-	
Mean	117	132	127	101.3	127.7	133.1	32.9	29.8	27.8	
St.Dev.	3.1	5.0	3.9	24,1	27.6	27.4	11.6	7.1	8.2	

REPRODUCE LOCALLY. Include form number and edition date on a	Il reproductions.	FORM APPROVED - OMB No. 0581-005			
U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL MARKETING SERVICE EXHIBIT E STATEMENT OF THE BASIS OF OWNERSHIP	Application is required in order to de certificate is to be issued (7 U.S.C. 2 confidential until the certificate is issued.	2421). The information is held			
1. NAME OF APPLICANT(S)	2. TEMPORARY DESIGNATION	3. VARIETY NAME			
• •	OR EXPERIMENTAL NUMBER	O. VINCETT IN MILE			
ENZA ZADEN BEHEER B.V.	E19.5761	CAPSULE			
4. ADDRESS (Street and No., or R.F.D. No., City, State, and ZIP, and Country)	5. TELEPHONE (Include area code)	6. FAX (Include area code)			
POBOX 7, 1600 AA ENKHUIZEN	+.31.228.315.844	+.31.228.315.854			
HAUNG 18, 1602 DB ENKHUIZEN	7. PVPO NUMBER				
NETHERLANDS					
8. Does the applicant own all rights to the variety? Mark an "X" in the	ne appropriate block. If no, please expl	ain.# YES NO			
9. Is the applicant (individual or company) a U.S. national or a U.S. b					
10. Is the applicant the original owner? YES	NO If no, please answer one	of the following:			
b. If the original rights to variety were owned by a company(ies)	NO If no, give name of count	ised company? ry			
 Additional explanation on ownership (Trace ownership from original from o	nal breeder to current owner. Use the i	everse for extra space if needed):			
•					
•					
PLEASE NOTE:					
Plant variety protection can only be afforded to the owners (not licens	sees) who meet the following criteria:				
. If the rights to the variety are owned by the original breeder, that protection and country which affords similar protection to nationals or	erson must be a U.S. national, national of the U.S. for the same genus and spec	of a UPOV member country, or ies.			
. If the rights to the variety are owned by the company which employ nationals of a UPOV member country, or owned by nationals of a genus and species.	yed the original breeder(s), the compan country which affords similar protection	y must be U.S. based, owned by to nationals of the U.S. for the same			
If the applicant is an owner who is not the original owner, both the	original owner and the applicant must n	neet one of the above criteria.			
he original breeder/owner may be the individual or company who dir ct for definitions.	rected the final breeding. See Section	41(a)(2) of the Plant Variety Protection			
ccording to the Papenwork Reduction Act of 1995, an agency may not conduct or sponsor, ontrol number. The valid OMB control number for this information collection is 0581-0055, cluding the time for reviewing the instructions, searching existing data sources, gathering a	The time required to complete this information colle	ction is estimated to average 0.1 hour per response.			

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, sexual orientation, marital or family status, political beliefs, parental status, or protected genetic information. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C. 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provide and employer.

REPRODUCE LOCALLY. Include form number and date on all reproductions.

Form Approved OMB NO 0581-0055

According to the Paperwork Reduction Act of 1995, an agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is 0581-0055. The time required to complete this information collection is estimated to average 5 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, sexual orientation, marital or family status, political beliefs, parental status, or protected genetic information. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

U.S. DEPARTMENT OF AGRICULTURE **AGRICULTURAL MARKETING SERVICE** SCIENCE AND TECHNOLOGY **PLANT VARIETY PROTECTION OFFICE** BELTSVILLE, MD 20705

EXHIBIT F

****	DECLARATION REGARDING DEPOSIT			
NAME OF OWNER (S) ENZA ZADEN BEHEER B.V.	ADDRESS (Street and No. or RD No., City, State, and Zip Code and Country) PO 80X 7, 1600 AA ENKHUIZEN HALING 16, 1602 DB ENKHUIZEN	TEMPORARY OR EXPERIMENTAL DESIGNATION E19. 5761 VARIETY NAME CAPSULE		
	NETHERLANDS			
NAME OF OWNER REPRESENTATIVE (S) AERNOVDT AARDSE ENZA ZADEN RESEARCH USA, INC.	ADDRESS (Street and No. or RD No., City, State, and Zip Code and Country) PO BOX 866 SAN JUAN BAUTISTA, CA 95045	PVPO NUMBER # 2 0 0 7 0 0 1 2 0		

I do hereby declare that during the life of the certificate a viable sample of propagating material of the subject variety will be deposited, and replenished as needed periodically, in a public repository in the United States in accordance with the regulations established by the Plant Variety Protection Office.

Signature